“Advancing Traffic Efficiency and Safety through Software Technology phase 2 (ATESST2)”

EAST-ADL Overview

ATESST2 Concept presentation 2010 Q2
The Challenge

Product Related Challenges
- Functionality increase
- Complexity increase
- Increased Safety-criticality
- Quality concerns

Challenges Related to Development Process
- Supplier-OEM relationship
- Multiple sites & departments
- Product families
- Componentization
- Separation of application from infrastructure
- Safety Requirements, ISO 26262
The Response - EAST-ADL

Architecture Description Language for Handling all engineering information required to sustain the evolution of vehicle electronics
EAST-ADL

A System Modeling Approach/Architectural Framework that

- Is a template for how engineering information is organized and represented
- Provides separation of concerns
- Embrace the de-facto representation of automotive software – AUTOSAR
EAST-ADL Characteristics

Extended compared to traditional ADL as it covers:
- Variability
- Requirements
- Safety
- Behavior
- Environment Modelling
- Design methodology

EAST-ADL
- Language Metamodel
- UML2 Profile
- Prototype Tool

EAST-ADL has been developed in:
- ATESST (EC FP6 2006-2008)
- ATESST2 (EC FP7 2008-2010)
- TIMMO (ITEA 2007-2009)

Alignment/integration:
- (SysML, AADL)
- AUTOSAR
- ISO26262
<table>
<thead>
<tr>
<th>EAST-ADL Contributors 2000-2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDI AG</td>
</tr>
<tr>
<td>BMW AG</td>
</tr>
<tr>
<td>Carmeq GmbH</td>
</tr>
<tr>
<td>CRF</td>
</tr>
<tr>
<td>Daimler AG</td>
</tr>
<tr>
<td>ETAS GmbH</td>
</tr>
<tr>
<td>Mecel AB</td>
</tr>
<tr>
<td>Mentor Graphics</td>
</tr>
<tr>
<td>OPEL GmbH</td>
</tr>
<tr>
<td>PSA</td>
</tr>
<tr>
<td>Renault</td>
</tr>
<tr>
<td>Robert Bosch GmbH</td>
</tr>
<tr>
<td>Siemens, Continental</td>
</tr>
<tr>
<td>Valeo</td>
</tr>
<tr>
<td>Vector</td>
</tr>
<tr>
<td>Volvo Car Corporation</td>
</tr>
<tr>
<td>Volvo Technology AB</td>
</tr>
<tr>
<td>ZF</td>
</tr>
<tr>
<td>CEA-LIST</td>
</tr>
<tr>
<td>INRIA</td>
</tr>
<tr>
<td>LORIA</td>
</tr>
<tr>
<td>Paderborn University-C-LAB</td>
</tr>
<tr>
<td>Technical University of Darmstadt</td>
</tr>
<tr>
<td>Technische Universität Berlin</td>
</tr>
<tr>
<td>The Royal Institute of Technology</td>
</tr>
<tr>
<td>The University of Hull</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
Relation to other modeling languages and approaches?

Why Not UML?
• EAST-ADL is domain-specific but its UML2 profile gives access to UML2 tools.

Why not SysML?
• EAST-ADL takes up applicable SysML concepts but provides additional domain-specific support

Why not Autosar?
• EAST-ADL complements Autosar with respect to feature content, functional structure, safety properties, etc.

Why not AADL
• AADL represent the software implementation of a system while EAST-ADL starts on a more abstract level.

Why not proprietary tools (Simulink, Statemate, Modelica, ASCET, …)?
• EAST-ADL provides an information structure for the engineering data and integrates external tools
EAST-ADL Evolution

EEA AIL
UML2
Titus
SYSML
AADL
...

EAST ADL

AUTOSAR

UML2
SYSML
AADL
...

ATESST Partners

EAST ADL V2.1
(Metamodel+Methodology+UML2 Profile)
Related Projects

AUTOSAR

CESAR
- ARTEMIS is a EC framework
- Starts 2009
- Safety-focused multi-domain (aerospace, auto, rail, automation) project
- Modeling approach potentially based on EAST-ADL

EDONA
- French automotive project on embedded systems tooling and methodology
- EAST-ADL and AUTOSAR

MeMVaTex
- French national project
- Addresses requirement modeling based on EAST-ADL

TIMMO
- Extends EAST-ADL and AUTOSAR with Timing aspects
- In synchronization with AUTOSAR timing team
- In synchronization with ATESSST2
Some Typical Engineering Scenarios

The Vehicle Manufacturer decides what to include in the next product
A Chassis engineer analyses a novel control algorithm
Application expert defines detailed design
Software engineer defines software architecture
Packaging and allocation, Integration on ECU
Early phase validation and verification
Product Planners decide what to put in the next product

Features represent the properties/functionality/traits (Brake, Wiper, CollisionWarning,...).

Vehicle Feature Model organize Features for the vehicle.

Variability mechanism supports the definition of rules for inclusion in different vehicles – Product Line Architecture.
A Chassis engineer analyses a novel control algorithm

Control algorithm is defined as a Function connected to a plant Function in the Environment model

EAST-ADL defines structure, legacy tools can be used for behavior definition, simulation, etc.

Realization details are omitted:
• Functional validation and verification can be done with respect to key aspects
• Understanding of key aspects is possible
An OEM and Supplier agree on specification

A model of the supplied system provides a clear and effective information exchange.

Functions can be integrated and validated before SW and HW exists.

Requirements are explicit and traceable to model elements.

Interfaces and interaction clarified, avoiding common specification bugs.
Application expert defines detailed design

A detailed functional architecture is defined, addressing e.g.

- Hardware architecture
- Allocation
- Fault tolerance
- Implementation concerns
- Sensor, actuator constraints
- Interfaces to middleware

Focus on behavior and interaction of functions

Abstract system architecture is defined and assessed
Software engineer defines SW Architecture

AUTOSAR Application SW Components are defined

The set of SW components together realizes the Functional Architecture

Software organization and functional organization is decoupled and optimization of the SW architecture is possible.

Legacy, sourcing, allocation, performance, verification, responsibility, re-use, etc. influence which functions are realized by each SW component
Outline

• Example usage of EAST-ADL
• **Model Structure**
 • Example Model
 • AUTOSAR Relation
 • Areas covered by EAST-ADL
• Conclusion
How is an EAST-ADL model structured?

An EAST-ADL model is organized in several levels of abstraction, where the software and electronics based artifacts are modeled.

The abstraction levels are “views” on the model and a complete representation of the system.

The contents on an abstraction level forms a complete representation of the vehicle embedded system, with respect to the concerns of that abstraction level.

The levels are refined top-down starting at the vehicle level.
How is an EAST-ADL model structured?

- On vehicle level the **features** of the vehicle
- On analysis level the **abstract functions**
- On design level the **hardware topology**, **concrete functions** and their **allocation** to nodes
- On Implementation level the **software architecture** as represented by AUTOSAR
Vehicle Level

- A Vehicle is characterized by a set of Features
- Features are *stakeholder* requested functional or non-functional characteristics of a vehicle
- A Feature describes that "what", but shall not fix the "how"
- A Feature is specified by requirements and use cases
- From a top-down architecture approach the features are the configuration points to create a vehicle variant
Analysis Level

Analysis Level is the abstract Functional description of the EE system

- Realizes functionality based on the features and requirements
- Captures abstract functional definition while avoiding implementation details
- Defines the system boundary
- Environment model and stakeholders define context
- Basis for safety analysis
Design Level

Design Level captures the concrete functional definition with a close correspondence with the final implementation:

- Captures functional definition of application software
- Captures functional abstraction of hardware and middleware
- Captures abstract hardware architecture
- Defines Function-to-hardware allocation
Implementation Level

The Implementation Level represents the software-based implementation of the system

- Software components represent application functionality
- AUTOSAR Basic software represents platform
- ECU specifications and topology represent hardware
- Model is captured in AUTOSAR
 - Software component template
 - ECU resource template
 - System Template
Traceability between abstraction levels

Realization relations identify which abstract element is realized by a more concrete entity.

- **Functions on analysis level realizes features on vehicle level**
- **Functions on design level realizes functions on analysis level**
- **SW components or runnables on implementation level realizes functions on design level**

SystemModel
- **VehicleLevel**
 - TechnicalFeatureModel
- **AnalysisLevel**
 - FunctionalAnalysisArchitecture
- **DesignLevel**
 - Functional Design Architecture
 - Hardware Design Architecture
- **ImplementationLevel**
 - AUTOSAR System

<table>
<thead>
<tr>
<th>EnvironmentModel</th>
<th>Vehicle Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analysis Level</td>
</tr>
<tr>
<td></td>
<td>Design Level</td>
</tr>
<tr>
<td></td>
<td>Implementation Level</td>
</tr>
<tr>
<td></td>
<td>Operational Level</td>
</tr>
</tbody>
</table>
Environment Model

The Environment model captures the plant that the EE system control and interact with

- In-vehicle, near and far environment is covered
- Same Environment Model may be used on all abstraction levels
- Different Environment models may be used depending on validation scenario
Outline

• Example usage of EAST-ADL
• Model Structure
• Example Model
• AUTOSAR Relation
• Areas covered by EAST-ADL
• Conclusion
Function interaction – end-to-end

Model structure supports interaction with the environment and end-to-end functional definitions
Hardware Design Architecture

Hardware architecture support hardware design and functional allocation

Behavior of HW entities is defined for use in Functional Design Architecture
Outline

• Example usage of EAST-ADL
• Model Structure
• Example Model
• AUTOSAR Relation
• Areas covered by EAST-ADL
• Conclusion
EAST-ADL Complements AUTOSAR

EAST-ADL is an information structure including aspects beyond the Software Architecture

Requirements, traceability, feature content, variability, safety, etc.

Provides means to define what the software does

An AUTOSAR specification defines the software architecture and information required for SW integration - but is neutral to its functionality

Provides means to model strategic properties

Key vehicle aspects is captured independently of the software architecture

Supports modelling of error behavior and the representation of safety-related information and requirements
AUTOSAR vs. EAST-ADL System Model

System Model

Vehicle Level
- Technical Feature Model

Analysis Level
- Functional Analysis Architecture

Design Level
- Functional Design Architecture
- Hardware Design Architecture

Implementation Level
- AUTOSAR System

Environment Model

Vehicle Level
Analysis Level
Design Level
Implementation Level
Operational Level
Relation between Model entities

Example of Mapping
Variability

Definition of Feature Content of Vehicle using Feature Trees
• Definition of Product Line in terms of mandatory and optional features for each vehicle category

Definition of Variability rules for realization
• Optional/mandatory functions and components
• Definition on how to resolve variability based on feature content
Requirements and V&V

Definition of Requirement modelling framework based on SysML

• Concepts for capturing requirements and components in same model
• Traceability between requirements, components and V&V

V&V constructs to capture test case, test outcome, etc.

Integration of RIF concepts (Requirement Interchange Format)
Safety Aspects & ISO 26262

ASIL Categorization through requirements

Support for Safety Case – Use of model entities to argue safety

Organization of information in line with ISO 26262

Support for methods required by ISO26262
Error modelling & failure analysis

Modelling Concepts for Hazards and Error Propagation

Basis for Hazard Analysis and Fault Tree and Failure Modes and Effects Analysis

Tool Interface for Automatic FTA/FMEA
Behavior

Definition of Behavioral semantics to allow legacy tool integration
• Ascet, Simulink, legacy code, etc.

Definition of relation to AUTOSAR behavior

Behavioral Semantics for Environment model (Plant)
Timing

Formalization of timing requirements and properties in relation to structural model elements

Approach is symmetric w.r.t AUTOSAR V4 timing constructs

Reaction, age, synchronization and repetitions can be defined
EAST-ADL Tooling

UML-based Tooling
• Based on CEA Papyrus
• Integrated Eclipse application with 5 ATESSST plugins

AUTOSAR-based Tooling
• MentorGraphics VSA

DSL Tooling
• MetaEdit+
Outline

• Example usage of EAST-ADL
• Model Structure
• Example Model
• AUTOSAR Relation
• Areas covered by EAST-ADL
• Conclusion
Conclusion

EAST-ADL provides an information structure for design of automotive embedded systems

- Architecture Description Language and Architectural Framework

Use of abstraction levels is a fundamental concept

- entities on lower levels realize entities on higher levels

EAST-ADL is a fully aligned complement to AUTOSAR

- AUTOSAR is the SW architecture definition enabling SW component integration on ECU
- EAST-ADL supports the successful integration of AUTOSAR components
- EAST-ADL Supports additional engineering steps including *feature definition, requirements engineering, V&V, safety analysis, functional modeling/integration, product line engineering*